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We study the boson–parafermion entanglement of the parasupersymmetric coherent
states of the harmonic oscillator and derive the degree of entanglement in terms of the
concurrence. The conditions for obtaining the maximal entanglement is also examined,
and it is shown that in the usual supersymmetry situation we can obtain maximally
entangled Bell states.
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1. INTRODUCTION

A fundamental difference between quantum and classical physics is the pos-
sible existence of quantum entanglement between distinct systems (Einstein et al.,
1935; SchrÖdinger, 1935). It exhibits the nature of nonlocal correlation between
quantum systems, and plays an essential role in various fields of quantum informa-
tion theory and provides potential resources for communication and information
processing (Bennett et al., 1993, 1996; Bennett and Wiesner, 1992). By definition,
a pure quantum state of two or more subsystems is said to be entangled if it is
not a product of states of each components. A lot of works have been devoted to
the preparation and measurement of entangled states (Akhtarshenas, in press; Liu
et al., 2004). The entangled orthogonal states receive much attention in the study
of quantum entanglement. However the entangled nonorthogonal states also play
an important role in the quantum information processing. Bosonic entangled co-
herent state (Sanders, 1992) and SU (2) and SU (1, 1) coherent states (Wang et al.,
2000) are typical examples of nonorthogonal states. Moreover for general bipartite
nonorthogonal states some condition have been found for maximal entanglement
(Fu et al., 2001; Wang, 2001)
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Supersymmetric (SUSY) quantum mechanics is considered as a simple real-
ization of SUSY algebra involving the fermionic and the bosonic operators (Cooper
et al., 1995; Witten, 1981). The formalism of SUSY quantum mechanics has also
been extended for parasupersymmetric (PSUSY) quantum mechanics in order to
includes symmetry between bosons and parafermions of order p (= 1, 2, · · ·)
(Cooper et al., 1995; Durand et al., 1991; Khare, 1992; Rubakov and Spiridonov,
1993).

In this paper, our goal is to investigate the properties of the entanglement
degree between bosons and parafermions of the PSUSY coherent states of the
harmonic oscillator which have been recently obtained in Fakhri and Bahadori
(2000). The bosonic partner of the PSUSY coherent states is expressed in terms
of continues nonorthogonal states. It is shown that these states can be regarded
as the states of two logical qubits, so we can easily calculate the concurrence
(Wootters, 1998) of the states; an entanglement measure which has widely been
accepted as a measure for two qubit states. The condition for obtaining the maximal
entanglement is also examined, and it is shown that in the usual supersymmetry
situation we can obtain maximally entangled Bell states.

2. PARASUPERSYMMETRIC QUANTUM MECHANICS

In this section we recall the basic features of PSUSY quantum mechanics of
order p (= 1, 2, · · ·). Let us first define parafermi operators b and b† of order p

as which are known to satisfy the PSUSY algebra

bp+1 = (b†)p+1 = 0, [[b†, b], b] = −2b, [[b†, b], b†] = 2b†. (1)

and

bpb† + bp−1b†b + · · · + b†bp = 1

6
p(p + 1)(p + 2)bp−1. (2)

Now by defining

J+ = b†, J− = b, J3 = 1

2
[b†, b], (3)

it immediately follows from Equation (1) that the operators J± and J3 satisfy the
SU (2) algebra

[J+, J−] = 2J3, [J3, J±] = ±J±. (4)

Let us now choose J3 as the third component of the spin p

2 representation of the
SU (2) group with the following explicit form

J3 = diag
(p

2
,
p

2
− 1, · · · ,−p

2

)
. (5)
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It is now easy to see that the operators b and b† can be represented by the following
(p + 1) × (p + 1) matrices

(b)αβ = Cβδα,β+1, (b†)αβ = Cαδα+1,β , (6)

where

Cβ =
√

β(p − β + 1). (7)

Let us now consider the PSUSY harmonic oscillator Hamiltonian as

HPSUSY = ω

(
a†a + 1

2

)
− ωJ3. (8)

where a and a† are the bosonic annihilation and creation opertors, where satisfy
the commutation relation [a, a†] = 1, and J3 is as given in Equation (5). The first
term describes the Hamiltonian of one-dimensional harmonic oscillator and the
term −ωJ3 describes the interaction of spin p

2 particle with the uniform magnetic
field, therefore the whole PSUSY Hamiltonian describes the motion of a spin p

2
particle in an oscillator potential and a uniform magnetic field.

It is not difficult to see that the eigenvalue equation for the Hamiltonian of
Equation (8) is

HPSUSY|nb〉|p
2

,m〉 = ω

(
nb + 1

2
− m

)
|nb〉|p

2
,m〉, (9)

where |nb〉 are orthonormal eigenvectors of a†a with eigenvalues nb (nb =
0, 1, · · ·) and properties

a|nb〉 = √
nb|nb − 1〉, a†|nb〉 =

√
nb + 1|nb + 1〉, (10)

and |j,m〉 are orthonormal eigenvectors of J3 with eigenvalues m (m =
−j,−j + 1, · · · ,+j ) and properties

J±|j,m〉 =
√

(j ∓ m)(j ± m + 1)|j,m ± 1〉. (11)

For a fixed spin j = p

2 , the vectors |j,m〉 are related to the parafermi Fock states
as |j = p

2 ,m〉 = |nf 〉, where nf = p

2 − m denotes number of parafermions. In
the boson–parafermion Fock space representation, the eigenvectors of HPSUSY can
be written as

|φn,nf
〉 = |n − nf 〉|nf 〉, n = nb + nf , (12)

which represent a state with nb = n − nf boson and nf parafermion. It is clear
that the spectra corresponding to the state |φn,nf 〉 are (n + 1)-fold degenerate (for
n = 0, 1, · · · p), and the spectra for n ≥ p are (p + 1)-fold degenerate.
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3. PSUSY COHERENT STATES

In this section we review PSUSY coherent states which have been ob-
tained in Fakhri and Bahadori (2000). The PSUSY coherent states are defined
as eigenvectors of PSUSY annihilation operator A (Fakhri and Bahadori, 2000)

A = aIp+1 + (a†)
p−1

p!
(b†)

p
, (13)

The annihilation character of the operator A becomes clear if we choose a suit-
able superposition of degenerate eigenvectors of HPSUSY and add the requirement
A|ψn〉 = |ψn−1〉 (Fakhri and Bahadori, 2000). Now the PSUSY coherent states
for PSUSY annihilation operator A is defined by

A|Z〉 = z|Z〉, (14)

where eigenvalue z is an arbitrary complex number. By expanding |Z〉 in terms of
eigenvectors of HPSUSY as

|Z〉 =
∞∑

n=nf

p∑
nf =0

βnf ,n|n − nf 〉|nf 〉, (15)

and taking into account Equation (14), the following solutions are obtained for
expansion coefficients (Fakhri and Bahadori, 2000)

β0,n = −
√

n!

p(n − p)!
zn−pβp,p + zn

√
n!

β0,0, n ≥ 0,

βk,n = zn−k

√
(n − k)!

βk,k, k = 1, 2, · · · , p, n ≥ k + 1. (16)

By requiring the normalization condition 〈Z|Z〉 = 1, and setting

β0,0 = α0Qz∗p
, βk,k = αkQzp−k, k = 1, 2, · · · , p, (17)

where the coefficients αk (k = 0, 1, · · · , p) are real constant and

Q(|z|) = exp (−|z|2/2)√∑p−1
n=0

(
α2

p−n + α2
p

p2
(p!)2

(n!)2(p−n)!

)
|z|2n +

(
α0 − αp

p

)2
|z|2p

, (18)

the following form have been obtained for PSUSY coherent states of harmonic
oscillator (Fakhri and Bahadori, 2000)

|Z〉 = Q

⎡
⎣
(

α0(z∗)p|z〉 − αp

p
|z(p)〉

)
|0〉 + |z〉

⎛
⎝

p∑
nf =1

αnf
(z)p−nf |nf 〉

⎞
⎠
⎤
⎦ . (19)
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In Equation (19) |z〉 =∑∞
n=0

zn√
n!

|n〉 is the nonnormalized ordinary coherent state

of the harmonic oscillator and |z(p)〉 = ∂p

∂zp |z〉, and the relations

〈z|z〉 = exp (|z|2),〈
z|z(p)

〉 = z∗p exp (|z|2),〈
z(p)|z(p)

〉 =∑p

n=0
(p!)2

(n!)2(p−n)! |z|n exp (|z|2),
(20)

are also satisfied.

4. DEGREE OF ENTANGLEMENT

From the various measures proposed to quantify entanglement, the entan-
glement of formation has a special position which in fact intends to quantify the
resources needed to create a given entangled state (Bennett et al., 1996). Remark-
ably, Wootters has shown that the entanglement of formation of a two qubit mixed
state ρ is related to a quantity called concurrence as (Wootters, 1998)

Ef (ρ) = H

(
1

2
+ 1

2

√
1 − C2

)
, (21)

where H (x) = −x ln x − (1 − x) ln (1 − x) is the binary entropy and the concur-
rence C(ρ) is defined by

C(ρ) = max{0, λ1 − λ2 − λ3 − λ4}, (22)

where the λi are the non-negative eigenvalues, in decreasing order, of the Hermitian
matrix R ≡ √√

ρρ̃
√

ρ and

ρ̃ = (σy ⊗ σy)ρ∗(σy ⊗ σy), (23)

where ρ∗ is the complex conjugate of ρ when it is expressed in a standard basis
such as {|00〉 , |01〉 , |10〉 , |11〉} and σy represents the Pauli matrix in local basis
{|0〉 , |1〉}. Furthermore, the entanglement of formation is monotonically increasing
function of the concurrence C(ρ), so one can use concurrence directly as a measure
of entanglement. For pure state |ψ〉 = a00|00〉 + a01|01〉 + a10|10〉 + a11|11〉, the
concurrence takes the form

C(ψ) = |〈ψ |ψ̃〉| = 2 |a00a11 − a01a10| . (24)

In the following we will use the concurrence to quantify the entanglement of the
PSUSY coherent states (19). Recall that the state (19) may be written as |µ〉|u〉 +
|ν〉|v〉 where {|µ〉, |ν〉} are in general two nonorthogonal vectors in bosonic space
and {|u〉, |v〉} are two orthogonal (but not normalized) vectors in parafermion
space. The two nonorthogonal vectors |µ〉 and |ν〉 are assumed to be linearly
independent and span the two-dimensional subspace of the bosonic Hilbert space.
Therefore we may readily obtain the concurrence for state (19) by introducing
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an orthonormal basis in the subspace spanned by {|µ〉, |ν〉}. This can be easily
achieved by introducing basis

|0〉b = exp

(
−|z|2

2

) (
(z∗)p|z〉 − |z(p)〉)√∑p−1

n=0
(p!)2

(n!)2(p−n)! |z|2n

, |1〉b = exp

(
−|z|2

2

)
|z〉, (25)

in boson space and

|0〉f = |0〉, |1〉f =
∑p

k=1 αk(z)p−k|k〉√∑p

k=1 α2
k |z|2(p−k)

. (26)

in parafermion space. Under these basis the entangled PSUSY coherent state |Z〉
can be considered as a state of two logical qubits with the following form

|Z〉 = a00|0〉b|0〉f + a01|0〉b|1〉f + a10|1〉b|0〉f + a11|1〉b|1〉f , (27)

where

a00 = Q

√∑p−1
n=0

α2
p

p2
(p!)2

(n!)2(p−n)! |z|2n exp (|z|2/2),
a01 = 0,

a10 = Q (z∗)p
(
α0 − αp

p

)
exp (|z|2/2),

a11 = Q

√∑p−1
n=0 α2

p−n|z|2n exp (|z|2/2).

(28)

Equation (24) can be now easily used to calculate the concurrence of PSUSY
coherent state of order p as

C(p, z) = 2

[(∑p−1
n=0 α2

p−n|z|2n
) (∑p−1

n=0
α2

p

p2
(p!)2

(n!)2(p−n)! |z|2n
)]1/2

[∑p−1
n=0

(
α2

p−n + α2
p

p2
(p!)2

(n!)2(p−n)!

)
|z|2n +

(
α0 − αp

p

)2
|z|2p

] . (29)

By defining

A =
√∑p−1

n=0 α2
p−n|z|2n,

B =
√∑p−1

n=0
α2

p

p2
(p!)2

(n!)2(p−n)! |z|2n,
(30)

we get the following form for concurrence (29)

C(p, z) = 2AB

A2 + B2 +
(
α0 − αp

p

)2
|z|2p

. (31)

In the following our goal is to investigate the properties of the concurrence given
in Equation (29) or (31). First, we remark that state (19) is disentangled, i.e.
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C(p, z) = 0, if and only if αp = 0. In this particular case we have the following
product state

|Z〉 =
|z〉
(∑p−1

nf =0 αnf
(z)p−nf |nf 〉

)

exp (|z|2/2)
(∑p−1

nf =0 α2
nf

|z|2(p−nf )
) . (32)

Now, we try to find the situations that the concurrence becomes maximal. It is
clear that since A and B are independent of α0, therefore the first step to maximize
C(p, z) is to set α0 = αp

p
, and the problem of maximizing concurrence reduces to

the problem of minimizing 1 − C2(p, z) given by

1 − C2(p, z) = (A2 − B2)2

(A2 + B2)2

=

⎧⎪⎨
⎪⎩

α2
p

(
p!
p2 − 1

)
+∑p−1

n=1

(
α2

p

p2
(p!)2

(n!)2(p−n)! − α2
p−n

)
|z|2n

α2
p

(
p!
p2 + 1

)
+∑p−1

n=1

(
α2

p

p2
(p!)2

(n!)2(p−n)! + α2
p−n

)
|z|2n

⎫⎪⎬
⎪⎭

2

. (33)

From Equation (33) it is obvious that if we want to have a maximal entangled state
for all eigenvalues z, then the only solution of this equation is obtained for usual
SUSY coherent states, i.e. p = 1 and α0 = αp. In this case the maximal entangled
SUSY coherent state is the Bell state

|Z〉 = 1√
2
(|0〉b|0〉f + |1〉b|1〉f )

= exp (−|z|2/2)√
2

{(
z∗|z〉 − |z(p)〉) |0〉 + |z〉|1〉} .

(34)

On the other hand for p > 1 there is no solution for the constant coefficients
αk and all z, in which the system exactly reaches to a maximally entangled state
such that the concurrence is 1. But for |z| > 1 we can find the solutions that we
can nearly obtain the maximally entangled state. At this point let us choose the
coefficients αk as

αk = p!

p(p − k)!
√

k!
αp, k = 1, 2, · · · , p − 1. (35)

In this case the series in the numerator of Equation (33) vanishes and we obtain

C(p, z) =

√√√√√√1 −
(

p!
p2 − 1

)2

((
p!
p2 + 1

)
+ 2

∑p−1
n=1

(p!)2

p2(n!)2(p−n)! |z|2n

)2 . (36)

Figure 1 demonstrates the concurrence (36) as a function of p and z. It should
be stressed that, although the figure is plotted for continues values of PSUSY
parameter p, but only the integer values p = 1, 2, · · · are physically relevant. It
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Fig. 1. Concurrence C(p, z) is plotted as a function of p and z. Only integer values
of p are physically meaning.

shows that in all cases by increasing the eigenvalue z, the concurrence C(p, z)
rapidly reaches to maximum value 1. Indeed we find that for |z| > 1 the difference
between the maximum value of the concurrence, i.e. C = 1, and the concurrence
of the maximally entangled state is of the order of less than 10−3.

It is interesting to note that we may yet obtain, exactly, maximal entangled
states if we choose αk such that some of them be dependent to z. In this case one
particular set of solutions of the Equation (33) can be obtained if we choose all
but one of the coefficients αk constant, i.e.

αk = p!
p(p−k)!

√
k!

αp, k = 1, 2, · · · , p − 1, k �= p − m,

α2
p−m|z|2m = α2

p

((
p!
p2 − 1

)
+ (p!)2

p2(m!)2(p−m)! |z|2m
)

.
(37)

Clearly in this case, which is not the only case, we obtain maximum value 1 for
concurrence.

5. CONCLUSION

We have studied boson–parafermion entanglement of the parasupersymmet-
ric coherent states of the harmonic oscillator. The concurrence of the state is
obtained by using orthonormal basis of both bosonic and parafermionic partner of
the states. The condition for obtaining the maximal entanglement is also examined,
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and it is shown that in the usual supersymmetry situation we can obtain maximally
entangled Bell states. For a general PSUSY coherent state, it is shown that we can
approximately obtain the maximal entangled state whenever the value of z is large
enough.

ACKNOWLEDGMENTS

This work was supported by the research department of university of Isfahan
under Grant No. 831126.

REFERENCES

Akhtarshenas, S. J. (2006). International Journal of Theoretical Physics. DOI: 10.1007/s10773-006-
9093-4.

Bennett, C. H. and Wiesner, S. J. (1992). Physical Review Letters 69, 2881.
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